Last updated: 2022-04-07

Checks: 7 0

Knit directory: Fetal-Gene-Program-snRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220406) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 78db7d6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


working directory clean

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/03-MarkerAnalysisBCT.Rmd) and HTML (docs/03-MarkerAnalysisBCT.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 78db7d6 neda-mehdiabadi 2022-04-07 wflow_publish(c("analysis/Rmd", "data/txt", "data/README.md",

Load libraries and functions

library(edgeR)
library(RColorBrewer)
library(org.Hs.eg.db)
library(limma)
library(Seurat)
library(cowplot)
library(DelayedArray)
library(scran)
library(NMF)
library(workflowr)
library(ggplot2)
library(clustree)
library(dplyr)
library(gridBase)
library(grid)
library(speckle)

Read in the data objects

targets <- read.delim("data/targets.txt",header=TRUE, stringsAsFactors = FALSE)
targets$FileName2 <- paste(targets$FileName,"/",sep="")
targets$Group_ID2 <- gsub("LV_","",targets$Group_ID)
group <- c("fetal_1","fetal_2","fetal_3",
           "non-diseased_1","non-diseased_2","non-diseased_3",
           "diseased_1","diseased_2",
           "diseased_3","diseased_4")
m <- match(group, targets$Group_ID2)
targets <- targets[m,]
# Load unfiltered counts matrix for every sample (object all)
load("/group/card2/Neda/MCRI_LAB/single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/output/RDataObjects/all-counts.Rdata")
heart.integrated <- readRDS("/group/card2/Neda/MCRI_LAB/must-do-projects/EnzoPorrelloLab/dilated-cardiomyopathy/data/heart-int-FND-filtered.Rds")
Idents(heart.integrated) <- heart.integrated$Broad_celltype
heart.integrated$Broad_celltype <- factor(heart.integrated$Broad_celltype, levels = c("Er","CM(Prlf)","CM","Endo","Pericyte","Fib","Immune","Neuron","Smc"))

heart.integrated$biorep <- factor(heart.integrated$biorep,levels=c("f1","f2","f3","nd1","nd2","nd3","d1","d2","d3","d4"))
table(heart.integrated$biorep,heart.integrated$Broad_celltype)
     
        Er CM(Prlf)   CM Endo Pericyte  Fib Immune Neuron  Smc
  f1    43      836 4639  735      564 1029    287    109   54
  f2    49     1434 7146  715      425  755    274    130   20
  f3    31      592 4548 1298      404 1201    196    110  136
  nd1    0        0 1073  511      613 1622    337    207   59
  nd2    0        0 2221  462      280 1688    808     71   28
  nd3    0        0 4456  550      260  805    731    133   49
  d1     0        0 2925  880      822 3151    442    189  296
  d2     0        0 2025 3099     1075 2404   1501    120  173
  d3     0        0 4093  850      506 1598    815     95  162
  d4     0        0 1247  781      468 1832   1053     47   63
all.bct <- factor(heart.integrated$Broad_celltype,
              levels = c("Er","CM(Prlf)","CM","Endo","Pericyte","Fib","Immune","Neuron","Smc"))
sample <- heart.integrated$biorep

Get gene annotation and perform filtering

columns(org.Hs.eg.db)
 [1] "ACCNUM"       "ALIAS"        "ENSEMBL"      "ENSEMBLPROT"  "ENSEMBLTRANS"
 [6] "ENTREZID"     "ENZYME"       "EVIDENCE"     "EVIDENCEALL"  "GENENAME"    
[11] "GENETYPE"     "GO"           "GOALL"        "IPI"          "MAP"         
[16] "OMIM"         "ONTOLOGY"     "ONTOLOGYALL"  "PATH"         "PFAM"        
[21] "PMID"         "PROSITE"      "REFSEQ"       "SYMBOL"       "UCSCKG"      
[26] "UNIPROT"     
ann <- AnnotationDbi:::select(org.Hs.eg.db,keys=rownames(all),columns=c("SYMBOL","ENTREZID","ENSEMBL","GENENAME","CHR"),keytype = "SYMBOL")
m <- match(rownames(all),ann$SYMBOL)
ann <- ann[m,]
mito <- grep("mitochondrial",ann$GENENAME)
ribo <- grep("ribosomal",ann$GENENAME)
missingEZID <- which(is.na(ann$ENTREZID))
m <- match(colnames(heart.integrated),colnames(all))
all.counts <- all[,m]
chuck <- unique(c(mito,ribo,missingEZID))
all.counts.keep <- all.counts[-chuck,]
ann.keep <- ann[-chuck,]

remove x y genes

xy <- ann.keep$CHR %in% c("X","Y")
all.counts.keep <- all.counts.keep[!xy,]
ann.keep <- ann.keep[!xy,]
numzero.genes <- rowSums(all.counts.keep==0)
keep.genes <- numzero.genes < (ncol(all.counts.keep)-20)
all.keep <- all.counts.keep[keep.genes,]
ann.keep.all <- ann.keep[keep.genes,]

Limma analysis

logcounts.all <- normCounts(all.keep,log=TRUE,prior.count=0.5)

design <- model.matrix(~0+all.bct+sample)
colnames(design)[1:(length(levels(all.bct)))] <- levels(all.bct)

mycont <- matrix(0,ncol=length(levels(all.bct)),nrow=length(levels(all.bct)))
colnames(mycont)<-levels(all.bct)
diag(mycont)<-1
mycont[upper.tri(mycont)]<- -1/(length(levels(all.bct))-1)
mycont[lower.tri(mycont)]<- -1/(length(levels(all.bct))-1)

# Fill out remaining rows with 0s
zero.rows <- matrix(0,ncol=length(levels(all.bct)),nrow=(ncol(design)-length(levels(all.bct))))
test <- rbind(mycont,zero.rows)

fit <- lmFit(logcounts.all,design)
fit.cont <- contrasts.fit(fit,contrasts=test)
fit.cont <- eBayes(fit.cont,trend=TRUE,robust=TRUE)

fit.cont$genes <- ann.keep.all

treat.all <- treat(fit.cont,lfc=0.5)
dt <- decideTests(treat.all)
summary(dt)
          Er CM(Prlf)    CM  Endo Pericyte   Fib Immune Neuron   Smc
Down    1346      149   193   346      136   180    539    228    99
NotSig 16502    17207 17396 17432    17627 17382  17135  17520 17678
Up       341      833   600   411      426   627    515    441   412
par(mfrow=c(3,3))
par(mar=c(5,5,2,2))
for(i in 1:ncol(treat.all)){
  plotMD(treat.all,coef=i,status = dt[,i],hl.cex=0.5)
  abline(h=0,col=colours()[c(226)])
  lines(lowess(treat.all$Amean,treat.all$coefficients[,i]),lwd=1.5,col=4)
}

DotPlot to visualise marker genes

DefaultAssay(heart.integrated) <- "RNA"

sig.genes <- gene.label <- vector("list", ncol(treat.all))
for(i in 1:length(sig.genes)){
  top <- topTreat(treat.all,coef=i,n=Inf,sort.by="t")
  sig.genes[[i]] <- rownames(top)[top$logFC>0][1:10]
  gene.label[[i]] <- paste(rownames(top)[top$logFC>0][1:10],colnames(treat.all)[i],sep="-")
} 

csig <- unlist(sig.genes)
genes <- unlist(gene.label)

missing <- is.na(match(csig,rownames(heart.integrated)))

csig2 <- csig[!missing]

gene.cols <- rep(c(ggplotColors(8),"grey"),each=10)
gene.cols <- gene.cols[!missing]

d <- duplicated(csig2)
csig2 <- csig2[!d]
gene.cols <- gene.cols[!d]
DotPlot(heart.integrated,features=unique(csig2),group.by="Broad_celltype",cols = c("lightgrey", "red"))+RotatedAxis() + FontSize(y.text = 8, x.text=14) + labs(y=element_blank(),x=element_blank()) + coord_flip() + theme(axis.text.y = element_text(color=(gene.cols)))

Perform gene set testing on reactome sets

load("/group/card2/Neda/MCRI_LAB/single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/output/RDataObjects/human_c2_v5p2.rdata")
c2.id <- ids2indices(Hs.c2,treat.all$genes$ENTREZID)
reactome.id <-c2.id[grep("REACTOME",names(c2.id))]

Reactome figure

Top to bottom: Er, CM(Prlf), CM, Endo, Pericyte, Fib, Immune, Neuron, Smc

eryth.camera <- cameraPR(treat.all$t[,1],reactome.id)
eryth.camera.up <- eryth.camera[eryth.camera[,2]=="Up",]

cardioprlf.camera <- cameraPR(treat.all$t[,2],reactome.id)
cardioprlf.camera.up <- cardioprlf.camera[cardioprlf.camera[,2]=="Up",]

cardio.camera <- cameraPR(treat.all$t[,3],reactome.id)
cardio.camera.up <- cardio.camera[cardio.camera[,2]=="Up",]

endo.camera <- cameraPR(treat.all$t[,4],reactome.id)
endo.camera.up <- endo.camera[endo.camera[,2]=="Up",]

pericyte.camera <- cameraPR(treat.all$t[,5],reactome.id)
pericyte.camera.up <- pericyte.camera[pericyte.camera[,2]=="Up",]

fibro.camera <- cameraPR(treat.all$t[,6],reactome.id)
fibro.camera.up <- fibro.camera[fibro.camera[,2]=="Up",]

immune.camera <- cameraPR(treat.all$t[,7],reactome.id)
immune.camera.up <- immune.camera[immune.camera[,2]=="Up",]

neuron.camera <- cameraPR(treat.all$t[,8],reactome.id)
neuron.camera.up <- neuron.camera[neuron.camera[,2]=="Up",]

smc.camera <- cameraPR(treat.all$t[,9],reactome.id)
smc.camera.up <- smc.camera[smc.camera[,2]=="Up",]


nsets <- 5
all.cam <- rbind(eryth.camera.up[1:nsets,], cardioprlf.camera.up[1:nsets,],
                       cardio.camera.up[1:nsets,],endo.camera.up[1:nsets,],
                       pericyte.camera.up[1:nsets,],fibro.camera.up[1:nsets,],
                       immune.camera.up[1:nsets,],neuron.camera.up[1:nsets,],smc.camera.up[1:nsets,])

scores <- -log10(all.cam$PValue)
names(scores) <- rownames(all.cam)
names(scores) <- gsub("REACTOME_","",names(scores))
par(mfrow=c(1,1))
par(mar=c(5,41,3,2))
barplot(scores[length(scores):1],horiz = T,las=2,col=rev(rep(c(ggplotColors(8),"grey"),each=nsets)),cex.names=0.9,
        cex.axis = 1.5,xlab="-log10(PValue)",cex.lab=1.5)
abline(v= -log10(0.05),lty=2)


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /hpc/software/installed/R/4.1.2/lib64/R/lib/libRblas.so
LAPACK: /hpc/software/installed/R/4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] speckle_0.0.3               gridBase_0.4-7             
 [3] dplyr_1.0.8                 clustree_0.4.4             
 [5] ggraph_2.0.5                ggplot2_3.3.5              
 [7] NMF_0.23.0                  bigmemory_4.5.36           
 [9] cluster_2.1.2               rngtools_1.5.2             
[11] pkgmaker_0.32.2             registry_0.5-1             
[13] scran_1.22.1                scuttle_1.4.0              
[15] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[17] GenomicRanges_1.46.1        GenomeInfoDb_1.30.1        
[19] DelayedArray_0.20.0         MatrixGenerics_1.6.0       
[21] matrixStats_0.61.0          Matrix_1.4-0               
[23] cowplot_1.1.1               SeuratObject_4.0.4         
[25] Seurat_4.1.0                org.Hs.eg.db_3.14.0        
[27] AnnotationDbi_1.56.2        IRanges_2.28.0             
[29] S4Vectors_0.32.3            Biobase_2.54.0             
[31] BiocGenerics_0.40.0         RColorBrewer_1.1-2         
[33] edgeR_3.36.0                limma_3.50.1               
[35] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                reticulate_1.24          
  [3] tidyselect_1.1.2          RSQLite_2.2.10           
  [5] htmlwidgets_1.5.4         BiocParallel_1.28.3      
  [7] Rtsne_0.15                munsell_0.5.0            
  [9] ScaledMatrix_1.2.0        codetools_0.2-18         
 [11] ica_1.0-2                 statmod_1.4.36           
 [13] future_1.24.0             miniUI_0.1.1.1           
 [15] withr_2.4.3               spatstat.random_2.1-0    
 [17] colorspace_2.0-3          highr_0.9                
 [19] knitr_1.37                rstudioapi_0.13          
 [21] ROCR_1.0-11               tensor_1.5               
 [23] listenv_0.8.0             labeling_0.4.2           
 [25] git2r_0.29.0              GenomeInfoDbData_1.2.7   
 [27] polyclip_1.10-0           farver_2.1.0             
 [29] bit64_4.0.5               rprojroot_2.0.2          
 [31] parallelly_1.30.0         vctrs_0.3.8              
 [33] generics_0.1.2            xfun_0.29                
 [35] doParallel_1.0.17         R6_2.5.1                 
 [37] graphlayouts_0.8.0        rsvd_1.0.5               
 [39] locfit_1.5-9.4            bitops_1.0-7             
 [41] spatstat.utils_2.3-0      cachem_1.0.6             
 [43] assertthat_0.2.1          promises_1.2.0.1         
 [45] scales_1.1.1              gtable_0.3.0             
 [47] org.Mm.eg.db_3.14.0       beachmat_2.10.0          
 [49] globals_0.14.0            processx_3.5.2           
 [51] goftest_1.2-3             tidygraph_1.2.0          
 [53] rlang_1.0.1               splines_4.1.2            
 [55] lazyeval_0.2.2            spatstat.geom_2.3-2      
 [57] yaml_2.3.5                reshape2_1.4.4           
 [59] abind_1.4-5               httpuv_1.6.5             
 [61] tools_4.1.2               ellipsis_0.3.2           
 [63] spatstat.core_2.4-0       jquerylib_0.1.4          
 [65] ggridges_0.5.3            Rcpp_1.0.8               
 [67] plyr_1.8.6                sparseMatrixStats_1.6.0  
 [69] zlibbioc_1.40.0           purrr_0.3.4              
 [71] RCurl_1.98-1.6            ps_1.6.0                 
 [73] rpart_4.1.16              deldir_1.0-6             
 [75] viridis_0.6.2             pbapply_1.5-0            
 [77] zoo_1.8-9                 ggrepel_0.9.1            
 [79] fs_1.5.2                  magrittr_2.0.2           
 [81] data.table_1.14.2         scattermore_0.8          
 [83] lmtest_0.9-39             RANN_2.6.1               
 [85] whisker_0.4               fitdistrplus_1.1-6       
 [87] patchwork_1.1.1           mime_0.12                
 [89] evaluate_0.15             xtable_1.8-4             
 [91] gridExtra_2.3             compiler_4.1.2           
 [93] tibble_3.1.6              KernSmooth_2.23-20       
 [95] crayon_1.5.0              htmltools_0.5.2          
 [97] mgcv_1.8-39               later_1.3.0              
 [99] tidyr_1.2.0               DBI_1.1.2                
[101] tweenr_1.0.2              MASS_7.3-55              
[103] cli_3.2.0                 parallel_4.1.2           
[105] metapod_1.2.0             igraph_1.2.11            
[107] bigmemory.sri_0.1.3       pkgconfig_2.0.3          
[109] getPass_0.2-2             plotly_4.10.0            
[111] spatstat.sparse_2.1-0     foreach_1.5.2            
[113] bslib_0.3.1               dqrng_0.3.0              
[115] XVector_0.34.0            stringr_1.4.0            
[117] callr_3.7.0               digest_0.6.29            
[119] sctransform_0.3.3         RcppAnnoy_0.0.19         
[121] spatstat.data_2.1-2       Biostrings_2.62.0        
[123] rmarkdown_2.12.1          leiden_0.3.9             
[125] uwot_0.1.11               DelayedMatrixStats_1.16.0
[127] shiny_1.7.1               lifecycle_1.0.1          
[129] nlme_3.1-155              jsonlite_1.8.0           
[131] BiocNeighbors_1.12.0      viridisLite_0.4.0        
[133] fansi_1.0.2               pillar_1.7.0             
[135] lattice_0.20-45           KEGGREST_1.34.0          
[137] fastmap_1.1.0             httr_1.4.2               
[139] survival_3.3-0            glue_1.6.2               
[141] iterators_1.0.14          png_0.1-7                
[143] bluster_1.4.0             bit_4.0.4                
[145] ggforce_0.3.3             stringi_1.7.6            
[147] sass_0.4.0                blob_1.2.2               
[149] BiocSingular_1.10.0       memoise_2.0.1            
[151] irlba_2.3.5               future.apply_1.8.1